
Typesetting

reStructuredText

with ConTEXt

A Manual for rstConTEXt

Copyright 2010–2012 by Philipp Gesang, Heidelberg.
Mail any bug reports, patches or suggestions to
string.format("%s@%s.com", "phg42.2a", "gmail")
or pay a visit to my BitBucket home.

http://bitbucket.org/phg/

Contents

1 features not implemented 3

Nesting 3 Hyperlinks 3

2 usage 5

Invocation from the Command
Line 5 Module 6 RST projects 8

3 examples 9

Block Quotes 9 Numbered List 10
Line Blocks 11

4 directives 14

Admonitions 14 Images 14

5 substitution directives 17

6 special features 18

Text Roles 18 Bibliography and
Citations 19 Tabs 19

7 about this software 21

8 license 23

1 Features Not Implemented

1.1 Nesting

Proper nesting. So far only lists support real nested structures.
There’s no way you could have real paragraphs or bulleted lists inside
table cells. The problem is that with true nesting some jobs like
the dissection of tables would have to be moved from the formatter
to the parser. If you feel you need thoroughly nested structures –
e.g. grid tables in footnotes or bullet lists inside simple tables inside
enumerations inside quotations inside footnotes – you should consider
including ConTEXt code as substitution directives. (OTOH docutils’
new and old LaTeX formatter seems to have problems with tables in
footnotes as well. Not to mention its preference for enclosing random
nested structures in quote-environments.)

Should you find yourself in desparate need of tables or whatever
structures inside footnotes then I might agree to find a solution if you
ask.

1.2 Hyperlinks

The hyperlink implementation should be fine in general use if you
avoid certain situations.

• Never ever call your hyperlink targets anon_#, where # stands for
any integer. Just don’t do it, OK? Great.

• Referencing a structure element like a section heading by means of
an empty link block does work. However, if the element in question
requests a page break (e.g. the vanilla chapter{#1} command),

the reference will link to the previous page instead and become
useless. You can avoid this behaviour by referencing the section
directly or by targetting the first paragraph in the section instead.

• Link chaining does not work with internal references. This is con-
sidered a low-priority bug and will be addressed during the next
big hyperlink overhaul.

2 Usage

2.1 Invocation from the Command Line

rstConTEXt is integrated into the mtxrun command as a script,
which relies, naturally, on the Lua interpreter of LuaTEX. Therefore,
rstConTEXt might not run at all on other Lua installations, at least
not without modification of the source. Fortunately, every ConTEXt
user is equipped with LuaTEX nowadays so this dependency should
be trivial.

To generate ConTEXt code from a reStructuredText document
named infile.rst, call mtxrun:

$mtxrun --script rst --if=infile.rst --of=outfile.tex

You should now have a file outfile.tex that is ready to be run
by ConTEXt. With some exceptions the generated code is downward
compatible with MkII, thus it does not matter for a start whether you
decide to test it with texexec or context.

The resulting TEX file has rather a basic layout, if at
all. This is intentional as you are expected to include it in
a document after specifying your own setups. An example for
prepended setups can be found in the environment for this manual
(mod/doc/context/third/rst/manual.tex).

� The output of rstConTEXt automatically inserts necessary
setups for the components found in the input. Therefore,

the starttext and stoptext commands are part of the output and
may not be specified in your setups file. For now you have to use
the ConTEXt command appendtoks <token> to starttext to add

content like title pages and indices to the result. This mechanism
works reliable as long as you have an eye on the order in which the
tokens are given. Again, have a look at manual.tex to get an impres-
sion how useful this can be. User hooks for these and other common
constructs are thought of but have yet to be implemented.

To build the documentation, first create a temporary direc-
tory somewhere safe. Then copy or symlink the Lua files from
mod/tex/context/third/rst/ and the manual source there as well:

$mkdir tmp; cd tmp
$ln -s ../mod/doc/context/third/rst/documentation.rst .

Now run rstConTEXt on the main documentation file as follows:

$mtxrun --script rst --if=documentation.rst --of=doc.tex

Now run ConTEXt on the layout file:

$context ../mod/doc/context/third/rst/manual.tex

This will include the generated code after a couple of setups –
voilà, you have successfully built manual.pdf. (Note that the com-
mands you have to issue in each of the steps vary across different OS.
In the literal form the example might only work on Linux or POSIX
compliant systems.)

2.2 Module

A provisional module for MkIV is included (t-rst.mkiv). Actu-
ally, the converter was thought of as a module for direct rendering
of reStructuredText input initially, but certain objections diverted me
from this path.

• Typography. It’s all about the details. No matter how good your
converter is, it still won’t reach TEX’s omnipotence and flexibility.

rstConTEXt is a tool to generate raw material for your typesetting
job, not a typesetting system in itself.

• Testing. Never underestimate the insights gained from reading the
resulting ConTEXt file. Quite some effort has been undertaken to
make it human-readable, especially the setups.

• MkII. I’m not an MkII user at all save for rapid testing and the oc-
casional check for the sanity of ConTEXt’s behaviour. Slow hard-
ware forces me to run pdfTEX instead of LuaTEX whenvever I
need some result as quick as possible, so I wanted to keep the
code MkII clean. Do not expect Unicode (as in this document) to
work without precautions.

During the development readability of the generated code was
alway one of the main goals of rstConTEXt. Quite some computing
effort is made to reflow even simple things as paragraphs into a shape
understandable by more than only the TEX machine. If you should at
one point decide that your project is ripe for the typographical finish
and you want to add local changes in form of TEX code only, you
should be able to use the output of rstConTEXt as starting point.

However, using the module may have advantages when testing.
There is a usage example in moduletest.tex, introducing the macro
\typesetRSTfile. Another example in hybridtest.tex demon-
strates the ConTEXt command \RST as well as the corresponding
environment.

To install the module simply copy the files into your local TEX
tree, i.e. if the minimals reside in ~/context/, you would issue the
following line:

$cp -r ./mod/* ~/context/tex/texmf-local/

Then rebuild the filename database running context --generate.
The module should be ready for use now.

2.3 RST projects

In addition to the simple command \typesetRSTfile the module
also provides means for handling multiple reStructuredText input files.
This is achieved by so-called inclusions. An inclusion has to be defined
first, using the macro \defineRSTinclusion, which receives up to
three arguments in brackets. The first one specifies the identifier by
which the inclusion will be referred to afterwards (cf. ConTEXt’s
\useURL command). The second argument, which is mandatory as
well, takes the file to be associated with an inclusion. Finally, optional
setups can be passed to the parser via the third argument (cf. the
section on Tabs). E.g.:

\usemodule[rst]
\defineRSTinclusion [first][inc-first.rst]
\defineRSTinclusion[second][inc-second.rst][expandtab=true,shiftwidth=8]
\defineRSTinclusion [third][inc-third.rst]

Those inclusions are afterwards accessible within the \[start|stop]project
environment, and can be dereferenced by \RSTinclusion, which takes
the identifier as a single argument in brackets:

\startRSTproject
\RSTinclusion [first]
\RSTinclusion[second]
\RSTinclusion [third]
\stopRSTproject

Within the project environment, rstConTEXt allows for arbitrary
ConTEXt markup.

3 Examples

rstConTEXt was developed for the largest part by going through
the reStructuredText specification step by step and tested against
the examples given both in the spec and in the quick reference.
Therefore you should refer to those examples first (and drop me a note
immediately if any of them stopped working). All kinds of text blocks
and inline markup have been implemented with the exception of any-
thing mentioned in the section on Features Not Implemented.
Some of them that I have not found a real-world usage for (such as
definition lists) do not yet have a presentable output – there is room
for improvements that should be supplied by somebody who actually
uses those features.

3.1 Block Quotes

The block quote syntax is fully supported, including attributions.
For instance, the next snippet:

Some people have made the mistake of seeing Shunt’s work as a
load of rubbish about railway timetables, but clever people
like me, who talk loudly in restaurants, see this as a
deliberate ambiguity, a plea for understanding in a
mechanized world.

--- Gavin Millarrrrrrrrrr on Neville Shunt

gets you a neatly indented quotation, typeset in a slightly smaller
font magnitude.

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html

Some people have made the mistake of seeing Shunt’s work as a
load of rubbish about railway timetables, but clever people like me, who
talk loudly in restaurants, see this as a deliberate ambiguity, a plea for
understanding in a mechanized world.

Gavin Millarrrrrrrrrr on Neville Shunt

Don’t forget proper indentation.

3.2 Numbered List

Save for nesting lists are fully implemented in rstConTEXt. The
following code typesets a triple-nested list with different kinds of bul-
leting / numbering:

i First order list, first entry.

ii First order list, second entry.

iii First order list, third entry.

- Second order list, first entry.

Third order list, first entry.

Third order list, second entry.

Third order list, third entry.
Real nesting rules!

- Second order list, second entry.

iv First order list, fourth entry.

v First order list, fifth entry.

The result looks like this:

i. First order list, first entry.

ii. First order list, second entry.

iii. First order list, third entry.

− Second order list, first entry.

1. Third order list, first entry.

2. Third order list, second entry.

3. Third order list, third entry. Real nesting rules!

− Second order list, second entry.

iv. First order list, fourth entry.

v. First order list, fifth entry.

� Don’t forget the blank lines between list items.

3.3 Line Blocks

Line blocks are a convenient environment for parts of the text
that need to preserve line breaks and indentation. This makes it the
first choice for most kinds of poems:

| When does a dream begin?
| Does it start with a goodnight kiss?
| Is it conceived or simply achieved?
| When does a dream begin?

|
| When does a dream begin?
| Is it born in a moment of bliss?
| Or is it begun when two hearts are one?
| When does a dream exist?
|
| The vision of you appears somehow

Impossible to resist
| But I'm not imagining seeing you

For who could have dreamed of this?
|
| When does a dream begin?
| When reality is dismissed?
| Or does it commence when we lose all pretence?
| When does a dream begin?

Indentation, continued lines, etc. should work out without prob-
lems:

When does a dream begin?
 Does it start with a goodnight kiss?
 Is it conceived or simply achieved?
When does a dream begin?

When does a dream begin?
 Is it born in a moment of bliss?
 Or is it begun when two hearts are one?
When does a dream exist?

The vision of you appears somehow Impossible to resist
But I’m not imagining seeing you For who could have dreamed of this?

When does a dream begin?
 When reality is dismissed?
 Or does it commence when we lose all pretence?
When does a dream begin?

4 Directives

4.1 Admonitions

The following admonition directives have been implemented:

4.1.1 Caution

The caution directive results in the text being prefixed by one
“dangerous bend” symbol in order to resemble the “wizards only”
passages of the TeXbook. For example, the directive:

.. caution:: White mice do worse in experiments than grey mice.

will result in the following:

� White mice do worse in experiments than grey mice.

4.1.2 Danger

Similar to the caution directive, the danger directive prefixes the
given text with two “dangerous bends” giving it the look of Knuths’s
“esoteric” annotations.
�� Be nice to the parser: Don’t forget to align paragraphs that

end a literal block!

4.2 Images

Including pictures is easy using the image directive: simply supply
it the name of the image file as in .. image:: cow. If the format is

supported by ConTEXt the suffix can be neglected.
The placement of images can be controlled via a set of optional

arguments, each of which has to be specified on single line in key:
value style:

.. image:: cow
width: hsize
caption: A generic Dutch cow.

This will place your image somewhere close to the spot where you
defined it. (The placement parameter to placefigure will be set to
here by default.)

Figure 4.1 A generic Dutch cow (bos primigenius taurus).

The supported parameters are width (alias: size), caption and

scale. The width parameter accepts the values hsize (alias: fit,
broad) or normal. Alternatively, the scale parameter allows for ar-
bitrary manipulation of the desired magnification; it defaults to 1
(unscaled). The value passed as caption parameter will be used in as
the caption text of the image.

5 Substitution Directives

There are substitution directives for simple replacing and for in-
sertion of LuaTEX’s three languages: METAPOST, Lua and, of course,
TEX.

Ordinary text replacement is done via the replace substitution
directive. E.g. in the main text you consistently use |replaceme|
and have all its occurences substituted by I wasn’t in the mood
to write out this long sentence. like in the next snippet:

.. |replaceme| replace::
I wasn’t in the mood to write out this long sentence.

The code insertions work similarly. You have to specify some
phrase that gets substituted by the code you supply. E.g. this doc-
ument accesses the fancy logos predefined in the ConTEXt core via
substitutions:

.. |CONTEXT| ctx:: \CONTEXT

.. |LUATEX| ctx:: \LUATEX

Etc. pp. The respective directive names are ctx, mp and lua.
In order to get a drawn on spot, you would define a Metapost
substitution:

.. |circle| mp::
fill fullcircle scaled(8) withcolor blue;

6 Special Features

6.1 Text Roles

The default role for interpreted text is emphasis.
The role marker provides explicit access to formatting commands.

The formatting routine for inline literals can be called with the role
marker literal, strong emphasis likewise is achieved via the role
marker strong_emphasis.

Other roles that lack an equivalent among inline markup are bold,
ss (alias sans_serif), uppercase, lowercase and colors. Color roles
begin with the string color_ (the underscore is compulsive), followed
by either the string rgb_ or a valid color name. An rgb vector is
specified in decimal. Its values can be separated by either dashes or
underscores. Thus, color_rgb_.3_.5_.8 is a valid rgb expression, as
is color_rgb_0-1-0. Unforturnately, the colon character : has to be
escaped in color expressions, e.g. color_gray:5.

For example, to give Mr. Neville Shunt’s work an apt typographic
representation you can use these roles instead of the standard inline
markup:

:color_rgb_.9_.2_.7:`Chuff`, chuff, :literal:`chuffwoooooch`,
woooooch! Sssssssss, sssssssss! :uppercase:`Diddledum`,
`diddledum`, diddlealum. :literal:`Toot`, toot. The train
:bold:`now` standing :color_gray\:5:`at` platform :ss:`eight,
tch`, tch, :color_rgb_0-1-0:`tch`,
:color_rgb_.5-.6-.2:`diddledum`, diddledum.
:lowercase:`Chuffff`, :strong_emphasis:`chuffffiTff`
eeeeeeeeeaaaaaaaaa :color_red:`Vooooommmmm`.

http://wiki.contextgarden.net/Colors#Using_predefined_colors:_.5Csetupcolor

which yields when passed through rstConTEXt:
Chuff, chuff, chuffwoooooch, woooooch! Sssssssss, sssssssss!

DIDDLEDUM, diddledum, diddlealum. Toot, toot. The train now
standing at platform eight, tch, tch, tch, diddledum, diddledum.
chuffff, chuffffiTff eeeeeeeeeaaaaaaaaa Vooooommmmm.

6.2 Bibliography and Citations

� Not much for now concerning the usage of Taco’s bib system.
It’s just that I use my own bibliography system and never

became sufficiently familiar with the standard ConTEXt approach. If
you feel that the current support should be improved then feel free to
contact me! I will need somebody for testing.

When rstConTEXt first encounters a citation ([texbook]_) it
automatically looks up a bibliography in the working directory by the
name of jobname. E.g. with a main file manual.tex bibtex will use
the database called manual.bib. Symlinking your bibliography file
in the local tree should suffice and you can keep whatever directory
structure you prefer. (Speaking for myself, bib data usually resides
in its own subdirectory, so I’d use symlinks, too.)

6.3 Tabs

The reStructuredText specification requests that tabs (ASCII no
9) be treated as spaces. Converting your tabs to spaces might be a
good preparation for an rstConTEXt run. However, as of version 123
rstConTEXt comes with built-in tab expansion. It can be enabled by
supplying an optional argument to the typesetRSTfile command:

\usemodule[rst]
\typesetRSTfile[expandtab=true,shiftwidth=4]{myfile.rst}

The argument expandtab triggers a prepocessing step which ex-
pands all tabulation characters (t and v) into the correct amount of

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#whitespace

spaces. Optionally, the tab stop distance can be configured using the
shiftwidth parameter, which defaults to 4.

7 About this software

The docutils provide means to translate the extra-convenient
markup language reStructuredText into various formats like PDF,
HTML and LATEX, unfortunately omitting the One True Macro Sys-
tem: ConTEXt.

As far as I am aware of it, there is some support for reStructured-
Text in Pandoc but as it relies on a rather large set of dependencies
it proved very difficult (too difficult for me) to install on my favourite
distribution. From the interactive demo I gather that support for
reStructuredText’s language features is not very extensive and the re-
sult did not even come with proper setups. Additionally, it’s written
in a language I am not familiar with and that does not make use of
one the most awesome features of all the the extended capabilities
LuaTEX provides: the Lua interpreter.

For quite some time I was thinking about how to implement an
reStructuredText parser in LuaTEX, until some discussion emerged
on the ConTEXt mailing list that indicates a broader interest in con-
venient markup languages across the community. As the alternatives
mentioned above don’t meet the expectations of a normal ConTEXt
user, the initial step to write rstConTEXt was done. Handling most
of the corner cases and usability features of reStructuredText proved
in the end not nearly as easy as I imagined.

� rstConTEXt is experimental software and neither feature
complete nor thoroughly commented. Keep this in mind be-

fore you start using it. Anything might still be subject to change,
so expect breakage in case you start relying on exceptional behaviour
(read: bugs) that does not conform to the reStructuredText speci-
fication. Consider filing a bug report instead and wait for me (the

http://docutils.sourceforge.net/
http://johnmacfarlane.net/pandoc/
http://johnmacfarlane.net/pandoc/try
http://archive.contextgarden.net/message/20100814.051917.28caafcd.en.html

maintainer) to fix it, because regardless of how much testing I do
myself I alway run into the weirdest issues only during the actual de-
ployment of the software. Thus, if you notice that rstConTEXt does
not adhere to the outline of reStructuredText according to the Do-
cutils documentation, very likely you have discovered a corner case I
was not aware of.

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html

8 License

Copyright 2010-2011 Philipp Gesang. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or
other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

